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Neutrino Wave Equation in the Robertson-Walker 
Geometry 
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The massless Dirac equation is separated in the Robertson-Walker geometry. 
The Schr6dinger-like one-dimensional equation to which the problem is reduced 
is shown to admit a discrete positive spectrum. The existence or nonexistence of 
the discrete neutrino energy spectrum is connected, in the case of the standard 
cosmology, with the assumption that the universe is closed or not. 

1, INTRODUCTION 

The formulation of  the quantum wave equation in general relativity is 
based on the spinorial formalism developed in curved space-time in the 
pioneering paper by Newman and Penrose (1962). An account of  this 
formalism can be found in the book by Chandrasekhar (1983). 

The neutrino wave equation in curved space-time, considered as the 
massless case of  the Dirac equation, was separated in Kerr  geometry 
directly (Unruh, 1973; Teukolsky, 1973) or as a consequence of the 
separation of the Dirac equation (Chandrasekhar, 1976, 1983). The study 
of  neutrino waves has been considered in the context of  Schwarschild's 
geometry (Brill and Wheeler, 1957). 

In this paper we perform the separation of the massless Dirac equation 
in the Rober tson-Walker  geometry. This is of  interest because the Robert- 
son-Walker  metric is generally assumed as a basis of the standard cosmo- 
logical model (see, for instance, Weinberg, 1972; Kolb and Turner 1990). 

The separation of the equation is done along the lines of Teukolsky 
(1973) and Chandrasekhar (1983). The angular part is explicitly integrated 
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and the eigenvalues are determined by generalizing the usual method of 
integration of the angular part of the Schr6dinger equation. 

The problem is then reduced to the study of a Schr6dinger-like 
one-dimensional eigenvalue problem, to which qualitative standard mathe- 
matical methods apply. 

The result is the existence of a discrete positive neutrino energy 
spectrum in the case of the Robertson-Walker metric which corresponds 
to the closed universe, provided that the standard cosmology is assumed. In 
the case of the Robertson-Walker metric which corresponds to the open 
universe there exists discrete neutrino energy levels, but they are negative, 
while in the case corresponding to the flat universe the spectrum is 
continuous and coincides with the positive real line. 

The discrete positive spectrum is then determined in a case of physical 
interest. The separation of the energy levels and their values are, however, 
found to lie beyond the present experimental sensitivity. 

2. NEUTRINO EQUATION IN R O B E R T S O N - W A L K E R  METRIC 

The formulation of the Dirac equation in the Robertson-Walker 
metric, given by 

2 _I-dr2 1 ds = = dt 2 - R (t)[1 _---S~r2 + rZ(dO 2 + sin 2 0 d~b 2) (I) 

is given here in the context of the formalism of Newman and Penrose 
(1962). [For notations, sign conventions, and development of this formal- 
ism, see Chandrasekhar (1983).] This requires we define a null-tetrad frame, 
which we choose to be 

�9 1 ( ( 1 -ar2 ) ' / 2  
e~l) = l i= ~--~ 1, , 0 , 0  

e~z) - n ~= 1, R 

1 (2) 
el3) - m i =  , / ~ r R  (0, O, 1, i csc 0) 

~ t  

1 
= e~4)=m*i=(mi) * . /~rR(O,O, 1, - i c s c O )  

v 

and calculate the corresponding spin rotation coefficients defined by 

1 
'7(a)(b)(c) = 2 ['~(a)(b)(c) "3t- 2(c)(a)(b) - -  •(b)(c)(a)] 
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where 
_ _  i j j i ~(a)(b)(c) - -  e(b)i , j[e(a)e (b) - -  e (a)e(b)] 

In the present case we have 

K = 7 3 t l  = 0 ,  V = 7 2 4 2 = 0  

2 = 7244 ~" 0 ,  T = '~312 = 0 

= Y241 = 0 ,  a = ~)313 = 0 

1 [~_ (1 -- at2) 1/2 ] 
P=7314= x~ ~ + rR (3) 

I IR (l-at2) '/2-1 
_1 

1 cot 0 
fl = - -~  = "~ (2213 Jr" 7343) = 2v /~rR  

1 R 
e ~--- - - 7  ~--- 2 (7211 "~ 7341 ) = 

2v/2R 

(the dot denotes time derivative). 
As a generalization of the Minkowski space-time case, the Dirac 

equation can be formulated in terms of covariant derivatives and general- 
ized Pauli matrices: 

r pA AB" ;i + i#*QC'Ec'B ' = 0  
(4) 

i A a A~,Q;i + ip ,pC'Ec'B " = 0 

where 

~ . 1 . ~ (  l i m i) 
aiAB, w / ~ \ m ,  i nl (5) 

The wave function is represented by the spinors pa ,  QA,, with # , x / 2  being 
the mass of the particle (Chandrasekhar, 1983). 

The Dirac equation (4) can be expressed explicitly in terms of the spin 
coefficients defined above and in terms of the direction derivatives D = lic~, 
A = n;O,, 5 = m*O i, 5" = rn*ic~i. In the case of zero-rest-mass particles one 
gets (Chandrasekhar, 1983, Chapter 10) 

(D + ~ - p )F  1 + (6 '  - a)F2 = 0 

(A +/~ - 7)F 2 + (6 + fl)F1 = 0 

(D + e - p ) G 2 -  (6 - ~)Gt = 0 
(6) 

(A + # - 7)G1 - (6* + fl)G 2 = 0 
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where F1 = po, F2 = pl ,  GI = O 1", G2 = _~o ' ,  and the explicit values of the 
directional derivatives and of the spin coefficients (3) are assumed to hold. 
Equations (6) are, in the Newman-Penrose formalism, the massless neu- 
trino equations in the Robertson-Walker geometry. 

3. SEPARATION OF THE E Q U A T I O N S  

Owing to the special dependence of the directional derivatives and of 
the spin rotation coefficients on the variable ~b, the ~b dependence of the 
wave function is given by e im4~, m = 0, _+ 1, _+2, _+3, . . . .  With this choice, 
equations (6) become 

D ( r R F l )  + ErRF1 + L - F 2  = 0 

A(rRF2) + erRF2 + L + F1 = 0 
(7) 

D(rRG2) + erRG2 - L + G1 = 0 

A(rRG1) + ErRGI - L -G2 = 0 

where L+I( , )  
V/~ t30 -T- m csc 0 + ~ cos 0 (8) 

The wave function depends now on the variables r, 0, t. By setting 

F1 = A l(r, O)T(t), G1 = B1 (r, O)T(t) 
(9) 

F2 = A2(r, O)T(t), G2 = B2(r, O)T(t) 

and by using the explicit value of c and of the directional derivatives, we 
can manipulate equations (7) to obtain 

ik = - I  (TR)  - 
T 2 

ik = (rAm)'(1 -- ar 2) 1/2 + x / ~ L -  A2 

rAl  

ik = - (rA2)'(  1 - ar 2) 1/2 + x / ~ L  +Ai (10) 
rA2 

ik = (rB2)'( 1 - ar z) 1/2 _ x / ~ L  +BI 
rB2 

ik = - (rBl)"( 1 -- ar 2) 1/2 _ w/~L +B2 

rBl 
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where k is a constant of separation, and the prime denotes the ordinary 
derivative with respect to the variable r. 

The time dependence is then 

r(,)_ Co [ f' a, l 
R(t )  3/2 exp - ik (11) 3o R(t)J 

Co is a constant of integration. The explicit time dependence of R(t)  and 
hence of T(t )  is connected with the particular cosmological model one 
assumes. However, as will be seen, all the other qualitative results are 
unaffected if one chooses the Friedmann model or any other cosmological 
dynamics governing R(t) .  

The separation of the equation can be further carried out by setting in 
(10) 

rA,  = S,  (O)f, (r) 

rA~ = S~(O)f~(r) 
(12) 

rB, = S,  (O)f2(r) 

rB2 = S2(O)ft (r) 

One then gets the following equations: 

w/2L - S2 = _/~S1 

w/2L +S~ = 232 

and 
rf] ( 1 -- ar 2) 1/2 _ ikrfl = 2fl 

(13) 

(14) 
rf'2(1 - ar2) 1/2 + ikrfz = 2f2 

2 is a separation constant. As a consequence of (13), S~ and $2 satisfy the 
eigenvalue equations 

2 L - L + S ~  = -22S~ 
(15) 

2 L  + L - S 2  = - 2 2 S 2  

For the radial equation, if we define 

" dr (16) 
r ,  = ( 1 - ar 2) I/2 

equations (14) become: 

(17) 
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or also 

+ k 2 Z+ = V+ Z+ 

22 2 dr (18) 

V+ = 7 -y- r 2 d r , '  Z+_ =f l  + f :  

If  a -- 1, then r ,  = sin-1 r, so that 

2 (2-T-cosr , )  ( O < r ,  < 2 )  (19) V_+ sin 2 r-----~ - - 

If  a = O, then r ,  = r, so that 

V+ = ~ (2 -T- 1) (r > 0) (20) 

If  a = - 1, then r ,  = sinh- 1 r, and 

2 
V+ sinh 2 r ,  (2 -T- cosh r , )  ( r ,  > 0) (21) 

In every case, Z+ satisfies a one-dimensional quantumlike equation. 

4. THE ANGULAR EQUATION 

We now determine the possible values of  2 2 . By using the definition (8) 
of  L-+, we find that the second equation (15) becomes 

S " +  S ' c o t O  + S I - 4 m  cos O - 2 - 4 m  2 + c o s  z 01 
~s~n2~ + 22S = 0  (22) 

The first equation (15) gives equation (22) with m ~ - m .  
We are looking for solutions S(O) of  equation (22) which are regular 

in 0 = 0 and 0 = re. Let us first consider the case m > 1. By putting 

S ( O )  = ( 1 - -  ~ ) m / 2  + 1/4( 1 + ~ ) m / 2  -- 1/4f(~), ~ : COS 0 (23)  

one readily gets for f ( r  the equation 

[ ( ( 1 - ~ 2 ) f " - [ 2 ( m + l ) ~ + l ] f ' +  2 z -  m + ~  = 0  (24) 

whose acceptable solution, corresponding to 22=  (l + 1/2) z, can be written 
in terms of  Jacobi polynomials (Erdelyi et al., 1953) 

p(m + I /2 ,m  - 1/2)/.~] f ( ~ ) =  /-m ~Sj,  m > l ,  l = m , m + l , m + 2  . . . .  (25) 

Therefore 

$1,,,(0) = ( 1 - cos 0) m/2 + 1/4( 1 + cos O) m/2 - l/4p(mt_m + 1/2,m -- 1/2)(COS 0) (26) 
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If rn < --1, it suffices to replace [see equation (22)] m by ira] and { by 
- { .  Thus, apart from an irrelevant factor [recall that P~=m)( -x)=  
( 

St,.~(O) = (1 + cos 0) 1'~1/2 + 1/4( 1 -- c o s  O) troll2 - llapllm_llglll2"lml + 1/2)(cos 0) 

m ~  < - 1 ~  

Finally, if m = 0, we put 

l ---Iml,  Im I + 1, Iml + 2, . . .  

s(o) = (I - 

(27) 

(28) 

to obtain, corresponding to 2 2 = (l + 1) 2 

St.o(O) = (sin 0)~I2U~(~), l = 0, 1, 2 , . . .  (29) 

where U~(~) is t he / th  Tchebychef polynomial of  the second kind (Erdelyi 
et al., 1953). 

5. THE RADIAL EQUATION 

The main consequence of  the results of  the previous sections is the 
existence of a positive discrete spectrum of k 2. This result follows directly 
from the analytical behavior of  the potentials V+ by applying qualitative 
standard results in the theory of  the one-dimensional Schr6dinger equation 
(Reed and Simon, 1978) in confined and nonconfined physical regions. 
According to these qualitative considerations one can check that discrete 
values of k 2 do indeed exist in the case a = - 1  (open universe of the 
standard cosmology) but that they take negative values. In the case 
corresponding to the fiat universe, a = 0, k 2 admit only continuous positive 
values that coincide with the positive real line. It is a matter of fact that 
only in the physical case a = 1 (corresponding to the closed universe of  the 
Friedmann model) do discrete values of  k 2 exist and are positive. 

To give explicit results, we study here the case a = 1 for the lowest 
value l = 0 of l. By taking into account equations (18), (19), we have to 
solve the equations 

COS r ,  

with the conditions 

f~ \  
Z• ( 0 ) =  Z_+tT) = 0 (31) 

[which follow from (12), (18) and from (14) recalling that 2 and k are 
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Z• in Z2(0, n/2). We first study the case 

1116o 

independent constants] and 
relative to Z+. 

By putting 
Z+ = ( 1 - ~)~/2( 1 + Of, r = cos r. (32) 

equation (30) becomes 

(1 -  ~2)f" + (1 -  4~)f' + (k2-  ~)f= 0 (33) 

with the solution 

Z+ (O =(I + O[A 2F'(1-k '  I + k; ~ ;1+ 

( 1 ~ )  -3/2 ( ~ 1 1 1 + , ) ]  (34, 
+ B  - -  2F~ - - k , - ~ + k ;  2 ; ~ -  

The condition Z+ (1)= 0 implies 
A 2 = - 3  k(1 - 4k 2) tan(rtk) (35) 

Furthermore (Erdelyi et al., 1953) 

2F~ l - k ,  1 +k;~;  

= ( l _ x ) , / 2 6  d (1 1 3 )l 
1 -41, 2 dx2Fl[,g -k '  ~+k; - .x  2 ' x= 1/2 

6 d sin(2k sin-1 x/~) 
~ ( 1  ~ X~ ~ ~2 

1 -4k2dx 2kx/~ x= 1/2 
r~ 1 

=_ 3 1  - 4k 212 cos(k 2 ) - l c  sin(k 2) 1 (36) 

2F, - ~ -  k, - ~  + ~; - ~ ;  x 

1 1 x )  

= __1 (1 - 4 k  2) cos(2k sin-I x / ~  
2 ( 1 - x) 1/2 

and 

(37) 
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whence 

2F1 -- - k , - ~ + k ; - ~ ;  

= ~ ( 1 -- 4k a) d x  ( 1 - x )  - 1/2 cos(2k sin- 1 ~/X) + 2k sin r~k 
/2 

1 I c o s ( k 2 ) + 2  k sin(k 2 )  1 (38) 

Therefore, from (34)-(36) and (38), the condition Z+ (0) = 0 implies 

2k tan -~- = 1 (39) 

It follows that there exists a countable set of solutions k. of (39) whose 
behavior for large n is 

kn --- 4n (40) 

The equation for Z_ ,  which follows from the one for Z+ with ~ ~ - ~ ,  
gives, as is easily checked, the same spectrum of values of k 2. 

6. CONCLUDING REMARKS 

The separation of the neutrino wave equation in the Robertson- 
Walker metric carried out in the previous sections reduces the problem to 
the solution of a Schr6dinger-like equation. The radial equation contains a 
separation constant k 2 which can consistently assume discrete positive 
values only in the physical case a = 1, corresponding to the closed universe 
of the standard cosmology. They are given, for large values, by k z _= (4n) z. 

If the constant k 2 in equation (18) is interpreted as the neutrino energy 
E., then the result is the existence of a discrete neutrino energy spectrum. 
Since we have performed our calculations in Planck units, a simple 
numerical estimate gives: 

IfEn = 25 eV, then E . + I - E n  _~ 10-13 eV. 
I f E .  = 4 M e V ,  then E . + 1 - E .  ~ 10-1~ 
I f E .  = 20 GeV, then E.+I - E .  ~ 10-8 eV. 
If E. + ~ - E. = 1 eV, then E. ~- 10 z6 eV. 
I f E . + 1 - E .  = 10-6eV, then E. ~- 1014eV. 

It follows that, when the energy is small, the separation of the energy 
levels is very tiny to be experimentally tested; when such separation is 
sensible, the energy involved is very improbable. 
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In spite of  these negative aspects, discrete neutrino energies have a 
cosmological interest: they could also be a component  of  the 2 K black- 
body neutrino distribution which followed the neutrino decoupling in the 
early universe of  the standard cosmology. 

I f  neutrinos would be produced in other different successive ways, then 
the discrete energy levels could have been reached after some thermaliza- 
tion process. 

Moreover,  if there were experimental evidence of  the nonexistence of  
such discrete neutrino energies, then the previous considerations would 
seem to support  the idea of  a flat universe in the case of  the standard 
cosmology. 
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